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The use ofη5-cyclopentadienyl-tricarbonyl rhenium and tech-
netium complexes in radiolabeling biologically interesting mol-
ecules is still rather underdeveloped, despite the excellent
structural and chemical properties of such complexes.1 The main
reason for this is that the synthesis of these kinds of complexes
is rather difficult and generally requires rather harsh conditions1a,b

or laborious procedures.1c We recently reported2 a new “three-
component” synthesis that provides a convenient way for prepar-
ing halo-, carbonyloxy-, and hydroxy-substituted CpRe(CO)3

complexes by a one-pot reaction of diazocyclopentadiene (C5H4N2),3

a rhenium(I) tricarbonyl species (2, Scheme 1)4 and a nucleophile
(halide or carboxylate anions) (Scheme 1, eqa). The rapidity and
simplicity of this reaction made it a promising method for labeling
biologically interesting compounds with Re-186, Re-188, and Tc-
99m radionuclides.5 However, so far the functionality linking the
organic portion and the metal complex has been limited to an
ester group (Scheme 1, eqa), which in some cases might undergo
a hydrolytic cleavage when usedin ViVo. A carbon-carbon bond
would provide a more secure connection between the radioactive
metal portion and the organic molecule. To prepare such a
carbon-carbon linkage, a palladium-catalyzed cross-coupling
reaction might be utilized to connect a previously prepared halo-
CpRe(CO)3 complex2 with an organometallic species.6 This
approach, however, involves long reaction times and often requires
additional protection/deprotection steps of sensitive functional
groups present on the organic moiety and, thus, is not suitable
for short-lived radionuclides such as Tc-99m (6 h half-life).1c

Intrigued by the possibility of using a carbon nucleophile
instead of a halide or a carboxylate in the three-component
reaction,2 we started to investigate the use of several organome-
tallic reagents with the aim of directly obtaining a carbon-linked
CpRe(CO)3 complex in one-pot. We were particularly interested
in boronic acids, which have already been successfully employed
in Pd-catalyzed cross-coupling reactions.7 Moreover, in recent
years these organometallic species have attracted a great deal of
attention, since they are nonflammable, stable to water and air,

and easy to handle. We were pleased to find that, as shown in
Scheme 1 and Table 1, boronic acids proved to be ideal “masked-
carbanion” nucleophiles under our reaction conditions.

In general, the reaction of C5H4N2 and the rhenium(I) tricar-
bonyl species with the boronic acids3a-e (Scheme 1, eqb, and
Table 1) turned out to be slower than with the carboxylates.2 In
fact, using the same amount of nucleophile (2 equiv), longer times
(14 h) were required to obtain acceptable yields (42-76%) of
the complex (conditions B, Table 1). However, we found that
with a 5-fold increase of the concentration of nucleophile
(conditions A), satisfactory yields could be obtained within short
reaction times (45 min), which are essential in radiolabeling. Both
aryl- and vinyl-substituted boronic acids showed a good reactiv-
ity,10 and the effect of apara-substituents on the aromatic ring
of several phenylboronic acids (3a-d) was also determined.

The influence of different substitution patterns on the reactivity
of boronic acids3a-d can be qualitatively established looking
both at the yields obtained within short reaction times (conditions
A) and at the results obtained in a competition experiment reported
below. As shown in Table 1 (conditions A), the reactivity of the
phenylboronic acids is lowered by electron-withdrawingpara-
substituents, such as an acetyl (3b, entry 2, Table 1) or a bromo
group (3c, entry 3), compared to the unsubstituted phenylboronic
acid (3a, entry 1), whereas it is significantly increased by an
electron-donating group, like apara-methoxy group (3d, entry
4). This order of reactivity (3d > 3a > 3c > 3b) was also
confirmed by a competition experiment in which equimolar
amounts of boronic acid3a-d (10 equiv each) were allowed to
react with C5H4N2 (1.5 eq) and the rhenium precursor2 (1.0 equiv)
at 80°C for 15 min. NMR analysis of the crude reaction mixture
showed the following product ratios, normalized to 1.0 for the
unsubstituted phenylboronic acid4a: 1.4 (4d), 1.0 (4a), 0.8 (4c),
0.3 (4b). The increased reactivity of electron-rich aryl boronic
acids in this reaction is just the opposite to what had previously
been observed in the Suzuki Pd-catalyzed cross-coupling reaction
with the same class of boronic acids.11 These observations indicate
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that a higher nucleophilicity of the organometallic precursor is
likely responsible for a faster reaction. Moreover, the use of a
palladium species such as Pd(PPh3)4, which is indispensable in
the Suzuki coupling of boronic acids,7 has no effect whatsoever
in our reaction. To our knowledge, this is the first example of an
uncatalyzed carbon-carbon bond formation reaction involving
boronic acids as precursors. We also found that a cyclic boronic
ester, namely, 2-phenyl-1,3,2-dioxaborinane, which reacts readily
under Suzuki conditions, is completely unreactive in our reaction,
showing that the presence of a free boronic acid is essential for
the three-component reaction to occur.12

As already observed in our previously reported reaction of
carboxylates,2 several functional groups are tolerated. The keto
group in3b (entry 2) is not affected, and more importantly, the
aryl-bromo functionality in3c (entry 3), which would be reactive
in a Pd-catalyzed reaction, is completely inert. Alcohol and
phenolic hydroxyl groups are also tolerated, as shown by the
example reported below in Scheme 2.

Encouraged by these results, especially by the excellent
reactivity of the vinylboronic acid3e9 (entry 5, Table 1), we

decided to try this reaction on compound5 (Scheme 2),13 an
estradiol derivative containing a vinylboronic acid group in the
17R position.

The rhenium precursor2, prepared as shown in Scheme 1,4

reacted in one pot with boronic acid5 (5 equiv), Et3N (10 equiv)
and C5H4N2 (3 equiv) in refluxing acetonitrile/acetone 1:1 mixture.
After 45 min, complex6 was obtained in 50% isolated yield
following flash chromatography. In this case, the cosolvent
(acetone) was needed because compound5 was only partially
soluble in pure acetonitrile.14 A classical organometallic approach
to 6 would have required protection/deprotection steps of the two
OH groups. However, such additional steps turned out to be
unnecessary in the reaction herein reported. An important side
reaction, the protodeboronation of the excess of5, did occur,
producing considerable amounts of 17R-vinylestradiol. Neverthe-
less, complex6 could be efficiently purified by chromatography.14

In conclusion, the results presented in this report illustrate a
marked extension of the three-component reaction toward the
preparation of carbon-substituted CpRe(CO)3 complexes, using
a very accessible class of organometallic reagents, the boronic
acids. The method herein reported is unique since it produces in
one pot a carbon-carbon bond between a nucleophile and the
Cp ring, in addition to the Cp-rhenium bond formation, without
the need for any catalyst. Mild conditions, short times, and good
yields suggest that this reaction should have great potential in
the radiolabeling of biologically interesting molecules.
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Table 1. Isolated Yields Attained in the Three-Component
Reaction of Several Boronic Acids (3a-e, Scheme 1)8

isolated yield (%)a

entry
boronic

acid R product
conditions

Ab
conditions

Bc

1 3a phenyl 4a 64 59
2 3b 4-acetylphenyl 4b 34 52
3 3c 4-bromophenyl 4c 39 50
4 3d 4-methoxyphenyl 4d 74 42
5 3e9 1-nonenyl 4e 51 76

a Yields are based on compound1. b Conditions A: 10 equiv of
boronic acid (3a-e) and 20 equiv of Et3N, with respect to the rhenium
precursor1 (Scheme 1), and 45 min reaction time.c Conditions B: 2
equiv of boronic acid, 4 equiv of Et3N, and 14 h reaction time.
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Communications to the Editor J. Am. Chem. Soc., Vol. 120, No. 50, 199813265


